
13th International Conference 

MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES 

  
16–17 May 2019, Vilnius, Lithuania eISSN 2029-9915 
Vilnius Gediminas Technical University eISBN 978-609-476-197-3 

 

 https://doi.org/10.3846/mbmst.2019.142 

 

© 2019 Authors. Published by VGTU Press. This is an open-access article distributed under the terms of the Creative Commons 
Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited. 

 

Automation of calibration process adopting  
metaheuristic optimization method  

Pavel Koudela1, Juraj Chalmovský2 

Department of Geotechnics Faculty of Civil Engineering, Brno University of Technology, Brno, Czech Republic 

E-mail: 1koudela.p@fce.vutbr.cz (corresponding author) 

Abstract. Optimization procedures offer a possibility for time-effective determination of input parameters values for 
complex soil constitutive models. The following paper presents a combination of the metaheuristic Particle swarm op-
timization method (PSO) and commercially available solver based on the finite element method (FEM). After the brief 
theoretical description, different alternatives to the PSO method are reviewed and tested. An optimal alternative is cho-
sen and further used. In the second part of the paper, the combination PSO – FEM is utilized for a fully automatic 
derivation of input parameters values for the Hardening small strain model from pressuremeter tests. Predicted pressure-
volume curves from the axisymmetric FE model gradually converge towards the measured curve until the accuracy 
criterion is reached. 
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Introduction  

Present material models offer a possibility for a more accurate prediction of soil behaviour. Determination of input 
parameters might be complicated by their number or sample disturbance due to soil sampling and tests preparation 
(Gilbert, 1992; Benz, 2007). 

In order to reduce time requirements for a calibration process, optimization algorithms are increasingly being 
used in technical practice. In the following paper, the metaheuristic optimization method Particle Swarm Method is 
adopted for automatically driven calibration of material model inputs parameters based on pressuremeter tests. The 
combination of two pressuremeter tests performed in different depths was used, thus leading to a reduction of effects 
of soil disturbance due to sampling and sample preparation. 

Automation of the calibration process is performed by using the combination of the metaheuristic PSO method 
and the axisymmetric finite element model of the pressuremeter test. Corrections of input parameters values are con-
trolled by the PSO method in such a way that differences between the measurement and the FE prediction are being 
gradually reduced until the accuracy condition is met. 

Optimization procedure 

Particle swarm optimization 

Particle swarm optimization (PSO) was developed in 1995 (Kennedy & Eberhart, 1995; Eberhart & Kennedy, 
1995). This method is based on the social behaviour of birds or fish, which communicate during the finding of food 
and they are sharing the information. For this behaviour, the general term “swarm intelligence” is established. This 
problem can be defined as the finding of the extrema of a function. This function is called an objective function for the 
optimization procedures. 

PSO uses an iterative process for finding the position of the objective function extreme. In each iteration, a new 

position of the particle is obtained according to (1a) consisting of three parts. In the first part, 1t
i
v , an inertia effect 

considering the particle velocity from the last iteration 1t
i
v  factored by the inertia weight   is involved. The second 

part  1 1
t

i ic   p x  reflects a memory of the best position of an individual particle ip  (personal best). 1c  and 1  

are the acceleration constant and the vector of random numbers (in range of 0 and 1), respectively. Finally, the third 
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part  2 2
t
ic   *g x  contains a collective memory, which is represented by the global best position *g  for a whole 

group of particles. 2c  and 2  are the acceleration constant and the vector of random numbers (in range of 0 and 1), 
respectively. A movement of a particle (a change of coordinates in a searching space) is controlled via its velocity in 

the search space (Figure 1). A new position 1t
i
x  of a particle, i in a current time step t is given by the previous 

position t
ix  and the current velocity 1t

i
v  according to (1b). 

    1 *
1 1 2 2

t t t t
i i i i ic c         v v p x g x ; (1a) 

 1 1t t t
i i i
  x x v . (1b) 

 

 

Figure 1. Movement of one particle during the iterative process of the PSO 

Summary of various adjustments of PSO 

Several modifications of the original PSO method (Shi & Eberhart, 1998; Heris, 2016; Yang, 2008) have been 
proposed since its development (Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995). Seven main adjustments 
summarized in Table 1 and briefly introduced in this chapter were therefore tested and compared. Based on this review, 
the most appropriate alternative was chosen for further application to a geotechnical boundary value problem. 

Table 1. Summary of tested PSO alternatives 

Adjustment 
No. 

New particle velocity equation 1c  2c    damp  

02    1 1 1
1 1 2 2ꞏ ꞏc c       t t t * t

i i i i iv v p x g x  2 2 – – 

03    1 1 1
1 1 2 2ꞏ ꞏc c        t t t * t

i i i i iv v p x g x  1.49618 1.49618 0.7298 – 

04    1 1 1
1 1 2 2ꞏ ꞏc c        t t t * t

i i i i iv v p x g x  2 2 1 0.99 

06    1 1
1 2 20.5 ꞏc c       t t * t

i i iv v g x  0.2 0.5 1 0.99 

08    1 1
1 2 20.5 ꞏc c       t t * t

i i iv v g x  0.7t  0.5 1 0.99 

09    1 1 1
1 1 2 2ꞏ ꞏc c        t t t * t

i i i i iv v p x g x  0.7t  0.5 1 0.99 

34    1 1 1
1 1 2 2ꞏ ꞏc c        t t t * t

i i i i iv v p x g x  1.49618 1.49618 0.7298 0.99 
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(Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995) recommended 1  and 1 2 2c c  . These values 
are used in the adjustment “02”. Furthermore, pre-chosen boundary limits of particle positions were applied. 

The study (Shi & Eberhart, 1998) of an inertia weight provides recommended values of all constants 0.7298   
and 1 2 1.49618c c  . The constriction factor χ (2) is involved in the particle velocity calculation (3). The value of 
parameter   is recommended as 4.1 leading to the constriction factor value 0.7298. This alternative is called “03”. 

 
2

2
χ

2 φ φ 4φ


  
; (2) 

 1 2φ c c  , φ 4 ;  

     1 1 * 1
1 1 2 2χ ω ꞏ ꞏt t t

i i i ic c      t
iv v p x g x  . (3) 

In order to reduce swarm position instability, an inertia damping was proposed by (Heris, 2016). Damping is 
defined by (4) in which the damping coefficient 0.99damp  . Damping is used in the alternative “04”. 

 1ꞏt t
damp

    . (4) 

In the so-called accelerated approach proposed by (Yang, 2008), the local best term  1
1 1ꞏc  t

i ip x  is replaced 

by the random vector  1 0,5c  . The best position of the individual particle is therefore not considered. This ap-

proach is tested as the alternative “06”. 
Next modification is based on a similar approach as the previous alternative. Moreover the influence of the ran-

dom vector  1 0,5c   decreases with time t (number of iterations) as the coefficient 1c  equals to 0.7t . This mod-

ification is called “08”. 
The local best position and validity of the (1) is preserved in the adjustment “09”. Exponential damping and 1c , 

2c  values are however taken over from the previous adjustment. 

Finally, the alternative “34” presents a combination of the modifications “03” and “04”. In this way a positive 
effect of the inertia damping and its exponential decrease (inertia weight 0.7298  , 0.99damp  ) and recom-

mended values of 1c  and 2c  (1.49618 ) are used in one alternative. 

Testing of various adjustments of PSO 

The efficiency of each modification was analyzed by means of finding a global extreme of chosen testing func-
tions (Molga & Smutnicki, 2005). These functions are mostly multimodal, two or multi-dimensional with several local 
extremes. MATLAB script involving the PSO method and a library of testing functions was created for this purpose. 
The script run was repeated 100 times for each combination of the particular PSO modification and testing function. 
A normalized mean distance of particles from the global extreme coordinates was then evaluated (5). 

 

1
max

1

particlen
i

r
j

norm

s

s

ns
r









, (5) 

where particles  is the actual particle distance from a global minima of a testing function, maxs  is the maximal possi-

ble distance of a particle in a search space, n is the number of particles, r is the number of repetitions.  
Results for six different testing functions are shown in Figure 2 for 50 iteration and 10 particles. Adjustment “02” 

neglecting particles damping in successive iterations showed the worst results. Other adjustments, which involving 
more sophisticated control of particles movements, reached better results during the optimization for all testing func-
tions. The sum mean distances values over all testing function was the lowest at adjustment “34“ of all considered 
adjustments. Due to this, in further application to a boundary value problem adjustment “34“ was involved. 
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Figure 2. Plot of the normalized mean distance of all particle on the end of PSO runs 

Definition of geotechnical problem 

The initial position of the particle i during the iteration t in three dimensional space is defined by the coordinates 

 , ,t
i i i ip q rx . Consequently, the objective function value in this particular position is  , ,i i if p q r . The PSO 

method governs the particle position update in the subsequent iteration 1t
i
x . The particle position is being corrected 

until the coordinates of the global extreme *G  are reached (see Figure 3a). In the current problem, particle coordi-

nates are represented by constitutive model input parameters: e. g. , , 'E c   for the Mohr – Coulomb model (see 
Figure 3b). Predicted load – displacement curves (or another response of geotechnical construction) for two sets of 
input parameters values in subsequent iterations are shown in Figure 3c. The red curve represents a measurement to 
which a prediction is approaching in subsequent iterations. 

 

  
 

a) b) c) 

Figure 3. Particle positions in two spaces and predicted the load-displacement curve 

Application to boundary value problem 

For the determination of input parameters values of chosen constitutive models, the combination of two pressuremeter 
tests in different depths (4.5 m and 9.5 m) is used. The pressuremeter test was performed in Neogene clay (Miocene) 
in the city Brno, Czech Republic. The Neogene clay is classified as Cl (ISO 14689) with gravimetric water content of 
32% – 37%, plasticity index of 29% – 33.4% and liquidity index of 77% – 85% (Miča, Chalmovský, Fiala, & Račanský, 
2011). The optimization application created for this application involving the PSO method and FEM solver. 

Description of the numerical model 

The axisymmetric FE model of the pressuremeter test was prepared in Plaxis 2D 2016 (see Figure 4). The height 
of the model is dependent on the number of pressuremeter and the width of the model is the same for either pressure-
meters. The boundaries are chosen such that their influence is negligible. The pressure to the cavity is simulated by the 
line load. 
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Figure 4. Axisymmetric FE model of the pressuremeter test 

Nodal displacements obtained from the numerical model are transformed into the respective volume changes of 
the pressuremeter cell (6) (Brinkgreve, Kumarswamy, & Swolfs, 2016) assuming a cylindrical expansion of the cell. 

 
 2 2

0 0
2

0 0

xR u RV

V R

 
 , (6) 

where: V  is the increment of pressuremeter cell volume, 0V  is the initial volume of the pressuremeter cell, 0R  

is the initial radius of the pressuremeter cell and xu  is the horizontal (radial) displacement predicted by the numerical 

model. 
The optimization algorithm minimizes the objective function value defined according to (7). In the objective 

function, both pressuremeter tests are included. 

    2
1 1

k n
femmeas

ji ji
j i

f V V
 

 x , (7) 

where meas
jiV  is the measured volume during the pressuremeter test, fem

jiV  is the predicted volume obtained from 

the numerical model, i is the loading stage (according to the pressuremeter test), j is the number of the pressumeter 
test. 

Three material models were used during the analysis. Mohr-Coulomb (MC) model is a well-known linear elastic 
perfectly-plastic model. Hardening soil (HS) model is the elastoplastic model considering shear and compression hard-
ening (Schanz, Vermeer, & Bonnier, 1999). Hardening soil small strain (HSS) model is the extension of the Hardening 
soil model and incorporates strain dependent shear moduli in small strains (Benz, 2007). 

Sensitivity analysis 

In order to identify governing parameters and thus reduce the number of optimized variables, the sensitivity anal-
ysis was first carried out. Relative sensitivity (Brinkgreve et al., 2016) of the horizontal (radial) displacement in the 
middle of the cylindrical cavity on the respective input variable change was investigated. In the case of all three material 
models both soil stiffness and strength have an important role (see Figure 5a, Figure 5b, Figure 5c). This is due to the 
fact, that the failure criterion is reached in the vicinity of the cylindrical cavity. Shear strength is governed by the 

effective friction angle  . In the case of the HS model, the unloading – reloading modulus ref
urE  has more influence 

than the remaining stiffness parameters (see Figure 5b). This is due to the fact the overconsolidation of Brno clay is 
considered in the numerical analysis, thus enlarging the stress range in the unloading – reloading regime. In the case 

of HSS model, both the small strain shear modulus 0
refG  and the unloading – reloading modulus ref

urE  reached the 

relative sensitivity values above 10% (see Figure 5c). 
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a) MC model b) HS model c) HSS model 

Figure 5. Sensitivity analysis 

Optimization 

In this section, only the optimization process of the HSS model input parameters is presented. Initial values of 

input parameters are summarized in Table 2. The values of 50
refE  and ref

oedE  are taken as 50 / 3ref ref ref
uroedE E E  . 

Considering the sensitivity analysis results, the variables ref
urE ,   and 0

refG  were further optimized. 

Table 2. Initial parameters of HSS model 

 
ref
urE  

[kPa] 
50
refE  

[kPa] 

ref
oedE  

[kPa] 

'c  
[kPa] 

'  
[°] 

m 
[-] 

0
refG  

[kPa] 
0,7  

initial values of parameter 18000 6000 6000 6 20 0.5 30000 41e  

 
In order to keep the computational time within acceptable limits, a combination of 5 particles in the swarm and 

20 iterations was used. In the course of calculations with this combination of particles and iterations, the objective 
function maintains the same value during at least 5 iterations before the final iteration was completed.  

The optimization algorithm generates random values of input parameters for all particles in the first step except 
the first particle where parameters are defined according to Table 2. After that, the optimization continues as described 
in the sections above. The measured pressuremeter curve, initial prediction based on variable values summarized in 
Table 2 and predictions for five different iterations are shown in Figure 6 for the pressuremeter test conducted in depth 
of 4.5 m. 

The optimized values of input parameters are summarized in Table 3. The measured pressuremeter curves, initial 
and final predictions in case of simultaneous optimization of both tests are shown in Figure 7. Final stiffness parameters 
are significantly higher than the initial estimates. Obtained values are in reasonable agreement with those published in 
(Miča et al., 2011) (see Table 4). These values were derived from the numerical back – analysis of deep excavations 

in similar geological conditions. The obtained values of unloading – reloading modulus ref
urE  and friction angle   

are slightly higher, however, the small strain shear modulus 0
refG  is slightly lower compared to the data published in 

(Miča et al., 2011). 

Table 3. Results of optimization of input parameters of the HSS model 

 
ref
urE  

[kPa] 

'  
[°] 

0
refG  

[kPa] 

*( )f g  

[cm6]  

optimized value of parameter 43310 24.8 55628 29073 
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Table 4. Values of parameters obtained from back – analysis of deep excavations (Miča et al., 2011) 

 
ref
urE

 
[kPa] 

'  
[°] 

0
refG

 
[kPa] 

value of parameter 36170 24 60000 

 

 

Figure 6. Step by step convergence of predicted pressuremeter curves 

 

 

Figure 7. Results of optimization – measured pressuremeter curves, predicted curves with initial parameters and  
pressuremeter curves with optimization parameters 
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Conclusions 

The results presented in this paper confirmed that the combination of the metaheuristic optimization technique and the 
finite element solver might be a useful and effective way for determination of input parameters of complex soil 
constitutive models based on in-situ tests. 

Usage of the optimized values of input parameters led to the simultaneous acceptable agreement with both pres-
suremeter tests from different depths. At the same time, these values are comparable with literature data obtained from 
a different type of constructions (retaining structures). 

Further research is currently mainly focused on the following areas: ensuring uniqueness and repeatability when 
applying stochastic optimization methods, multi-objective optimization, comparison with other metaheuristic methods 
and application of these methods on monitored geotechnical constructions. 
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