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Abstract. This paper considers a spatial frame bar finite element for modeling reinforced concrete beams and 
columns. Both concrete and reinforcement are described by the equations of the deformation theory of plasticity and 
the theory of plastic flow. Degradation of concrete during cracking is modeled by the descending branch of the σ – ε 
diagram (the deformation theory of plasticity), as well as the compression of the yield surface and its displacement in 
the space of principal stresses (the plastic flow theory). The longitudinal reinforcement is considered discretely. It is 
assumed that there is no reinforcement slipping in concrete. The paper provides the results of the studies that reveal 
the causes of computational instability related to the presence of a descending branch of the σ – ε diagram for 
concrete, and proposes ways to overcome it. The reliability of the obtained results is confirmed by comparing them 
with the results of experimental studies performed by other researchers, as well as with the results of numerical 
solutions obtained by the particle method. This paper also provides an example of the nonlinear analysis of the 
fragment of a multi-storey building from the SCAD Soft collection of problems (www.scadsoft.com). 
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Introduction  

Many FEA software packages, such as (ABAQUS, 2012), (ANSYS, 1999), (DIANA, 2014) and others, provide the 
user with a finite element library, material models and nonlinear analysis methods for modeling the behavior of 
reinforced concrete structures taking into account the elasto-plastic behavior of both concrete and reinforcement, as 
well as cracking in concrete. Nevertheless, the vast majority of calculations today are based on a linear elastic 
material model using finite elements that do not contain any information about the reinforcement. In other words, the 
rigidity of these elements depends neither on the diameter of reinforcement nor on its spacing. Internal forces are 
determined and the reinforcement is selected on the basis of such a calculation. And the fact that the presence of 
reinforcement changes the rigidities of structural elements compared to those assumed in the calculation, which in 
turn can lead to a different distribution of forces (it is typical for statically indeterminate systems) is completely 
ignored. The obvious fact that concrete is a physically nonlinear material, and its σ – ε diagram has almost no linear 
segments is ignored as well. 

At the same time, there are a large number of scientific researches proposing different models of concrete (e.g. 
Jouan, Kotronis, & Collin, 2014), (e.g. Sukumar, Moes, Moran, & Belytschko, 2000; Wang, 2013; Jirásek & Bažant, 
2002; Belytschko & Rabczuk, 2006) and others. However, the proposed approaches are so complex, that they are 
applied only to an individual beam, individual slab, individual plane frame etc. 

It is known that the behavior of an individual beam, column, floor slab, etc., may differ significantly from the 
case when they are considered together as a part of a structure. On the other hand, it is too expensive to perform a 
nonlinear analysis for the entire structure, and in many cases unnecessary. Therefore, we suggest to produce a 
traditional linear calculation of the entire structure and assign the diameters and step values between rods of 
reinforcement. Then select the most loaded fragments of this model, apply the reactions of the removed constraints 
and the most dangerous load to each of the selected fragments, and perform the nonlinear analysis. 

It all seems paradoxical, so the developers of SCAD (e.g. Karpilovskyi et al., 2018) have added the following 
finite elements to the finite element library: four-node and three-node isoparametric finite elements for the analysis 
of medium-thickness plates (Bathe, 1996) and shells (Fialko & Karpilovskyi, 2017; Fialko, 2015, 2018), and a spatial 
frame finite element, which will be considered in this paper. 
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Problem formulation 

The behavior of concrete is described both by the relations of the deformation theory of plasticity (CM1), (Bezukhov, 
1961; Ilyushin, 1948), formulated in terms of increments (Fialko, 2018), and by the plastic flow theory using the 
Drucker-Prager yield criterion (Criesfield, V. 2, 2000) (CM2) or the surface proposed in (e.g. Geniev, Kissyuk, & 
Tyupin, 1974) as a strength surface and used as a yield surface (CM3). Hereinafter СМ stands for constitutive 
model. Degradation of concrete during cracking is modeled by the descending branch of the σ – ε diagram in the 
case of the deformation theory of plasticity (CM1), as well as the compression of the yield surface (isotropic 
softening) and its displacement in the space of principal stresses (kinematic softening) in the case of the plastic flow 
theory (CM1, CM2). In the case of the deformation theory of plasticity, the σ – ε diagram proposed by the 
European Commission on concrete is used in the tension area, and a trilinear diagram is used in the tension area (e.g. 
Bathe, Walczak, Welch, & Mistry, 1989) (Figure 1). In the case of the plastic flow theory, the compression of the 
yield surface is determined by the σ – εps diagram shown in Figure 2. 
 

 

Figure 1. The σ – ε diagram for concrete. Deformation  
theory of plasticity 
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Figure 2. The σ – ε diagram for concrete. Plastic flow theory 

 

Here εps is the plastic strain measure, σt, σc are ultimate tensile and compressive strength of concrete 
respectively, εt, εc are ultimate tensile and compressive strains respectively, σu is the limit compressive stress in 
concrete, ξ is the parameter defining the length of the descending branch in the tension area, α is the parameter 
defining the remaining strength of concrete during cracking (usually α = 0), Ht = Et/(1 – Et/E), Et is the softening 
modulus of concrete in the tension area, E is the initial elastic modulus of concrete, t ↔ c. 

In the CM1 case point C corresponds to the ultimate compressive strength of concrete (Figure 1), point U – to 
the limit strain of concrete in the compression area, point P – to the start of unloading, point A – to the transition 
from the compression area to the tension area and vice versa. The residual strains are calculated, the origin on the 
strain axis is transferred to the point A and active loading begins in the area where the image point was after passing 
the point A. If the image point is in the tension area, and the concrete has already cracked during the previous 
loading history, then the image point slides along the strain axis (σ = 0) or parallel to the strain axis (σ = ασt). 

In the CM2 and CM3 case, the concrete has elastic behavior in accordance with Hooke's law inside the body 
bounded by the yield surface. When the Drucker-Prager yield criterion is used, the yield surface is given by the 
following equation 
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where tca  , tcb  ,  3,531.0  is the parameter defining the deviation of paraboloid from the circular 

shape, 231  , 2
0 3  a ,   DJ det3 , Dσ is the stress deviator. 

After the image point reaches the yield surface (plastic flow), the compressive and tensile strength of concrete 
change as follows: 
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Therefore, in the case of the plastic flow, the yield surface is compressed and moves in the space of the 
principal stresses in accordance with the descending branches (Ht < 0, t ↔ c) of the σ – εps diagram (Figure 2). 

The anisotropy of concrete is neglected compared to the structural anisotropy introduced by reinforcement. 
The behavior of reinforcement is described both by the relations of the deformation theory of plasticity 

formulated in terms of residual strains (CM1), and by the theory of plastic flow using the von Mises yield criterion 
(CM2 and CM3). A symmetric bilinear σ – ε diagram is assumed. Shear stiffness of reinforcement is taken into 
account in addition to its axial stiffness. The longitudinal reinforcement is considered discretely. 

 

 

Figure 3. Spatial frame finite element with longitudinal reinforcement 

S.P. Timoshenko shear model is used. A bar cross-section can have arbitrary shape with any number of holes 
and cuts. Numerical integration is used to calculate the integrals over the bar volume, therefore the cross-section of 
the bar is meshed into triangles (Figure 3), and longitudinal reinforcement bars are not snapped to mesh nodes. The 
kinematic hypothesis of a non-deformable cross-section is used to reduce a three-dimensional problem to a one-
dimensional one. In addition, the classic static hypothesis is used, according to which σy = σz = τyz = 0. The 
longitudinal axis s of a rebar is parallel to the longitudinal axis OX (Figure 3), and the n and z axes are parallel to the 
OY and OZ axes respectively. As a result of these hypotheses the stress and strain tensors, σ and ε, for concrete, and 
σs and εs for a rebar take the following form: 
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where ν is the Poisson’s ratio for concrete, and νs is the Poisson’s ratio for reinforcement. It is assumed that concrete 
and reinforcement work together (with no sliding): 

 xzszxysnxs  ,, . (5) 

The principle of virtual work is used to obtain the governing relations: 

 0::
0
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where V is the volume of a finite element, As is the cross-sectional area of the s-th rebar, a is the length, δAext is the 
virtual work of external forces. Summation is performed for all longitudinal reinforcement bars. Linear shape 
functions are used: N1(x) = 1 – x/a, N2(x) = x/a. In order to overcome the shear locking, shear strains are given as  

      , 0.5 0, , ,xy xy xyx z z a z y z      . Strains are related to nodal displacements for concrete as follows: 

 , , ex y z Φ q


, where 


 is a vector composed of strain tensor components ε, Φ  is the deformation matrix, 
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e
U V W B B U V W B B  q  is the vector of nodal displacements of a finite 

element e in the local coordinate system, U, V, W are the translational displacements in the direction of the OX, OY, 
OZ axes, respectively, θx, θy. θz. are the rotation angles, By = – θz, Bz = θy, i, j are the finite element node numbers. 
The deformation matrix for concrete has the form: 
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And the strain matrix for the s-th rebar taking into account (5) has the following form –  , ,s s s sx y zΦ Φ . 

Strains of the s-th rebar are expressed in terms of the nodal displacements as follows:  , ,s s s s ex y z Φ q


, where 

s


 is a vector composed of strain tensor components εs. 
The above relations are substituted into (6) resulting in the finite element relationships – an expression for the 

vector of internal forces 
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and for the consistent tangent stiffness matrix 
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Here , s 
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 are vectors composed of stress tensor components for concrete and reinforcement, respectively, 

,t t
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  
. Matrices ,t t

sC C  are determined in accordance with the assumed constitutive model. 

The details are given in (Fialko, 2018). 

Stability of numerical behavior of the considered design model 

The presence of a descending branch of the σ – ε diagram for concrete leads to the divergence of the numerical 
solution with mesh refinement after passing the yield point of the σ – ε diagram (Kayhan, 2009; Pietruszczak & 
Mroz, 1981) and others, (Figure 4, on the right). The reason for this behavior is that we can obtain any strain 
value ε ∈ [εu, εs] on the descending branch at the given stress level σav (Figure 4, on the left). Different 
approaches have been proposed to overcome this ambiguity, for example (Bažant & Pijaudier-Cabot, 1988), (e.g. 
Jouan et al., 2014) etc.  
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Figure 4. Divergence of the numerical solution with mesh refinement 
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These approaches are quite complex and often require data on materials which are not readily available to the 
engineer. Therefore, a simple engineering idea is used in the proposed approach – the reinforcement should 
provide the regularity and stability of the numerical solution.  

 

 

Figure 5. Mutual work of concrete and reinforcement  
in the tension area 
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Figure 6. Three-point test. Design model and  
the reinforcement layout 

Let’s consider a reinforced concrete bar subjected to uniform tension (Figure 5). The longitudinal force in the 
bar is 

       sssss EAAEAAN  ,11 . (10) 

Here A, As are the cross-sectional area of a bar and the cross-sectional area of a rebar, ε1 = σt/E, where ε1 is the strain 
of concrete corresponding to σt, E is the initial elastic modulus of concrete, ξ is the parameter regulating the rate of 
decrease of stresses in concrete with increasing strain ε within the descending branch, Es is the elastic modulus of 
steel, ε is the longitudinal strain. In order for a numerical solution to be stable, the function N(ε) has to be increasing 
for any value of ε. When ε is in the range ε ∈ [ε1, ξ ε1], it is true only when dN(ε)/dε>0. This condition is satisfied 
automatically in other ranges until reinforcement works elastically. Differentiating (10) by ε, we obtain 
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Here μs is the reinforcement ratio. This, in particular, implies that when there is no reinforcement (μs = 0) ξmin → ∞, 
the equilibrium state of the concrete bar within the descending branch will be unstable regardless of the ξ value. In 
the case of a reinforced bar, the inequality (11) is a necessary condition for the stability of the numerical solution of a 
tensile reinforced concrete bar within the descending branch (Fialko & Karpilovskyi, 2017). 

In order to provide the stability of the numerical solution, it is also important to take into account the stiffness 
of reinforcement on transverse shear in addition to its axial stiffness. Otherwise, there will be zero rows and columns 
in the tangential stiffness matrix in the tension area of concrete, which leads to its singularity and to lack of 
convergence when Newton-Raphson method is used (Fialko, 2018). 

Numerical results 

In order to confirm the reliability of the proposed approach, the results obtained for a bent single-span beam 
(Figure 6) are compared with the results of the numerical solution (Belytschko & Rabczuk, 2006), obtained by the 
particle method, and with the results of the experiment considered in the referenced paper. The following physical 
and mechanical characteristics are assumed for concrete: E = 28 000 MPa, σc = 32 MPa, σt = 2.5 MPa, ν = 0.22, and 
for reinforcement – Es = 200 000 MPa, σy,s = 587 MPa, Es′/Es = 0.01, where Es′ and σy,s are hardening modulus and 
yield strength of steel respectively. Longitudinal reinforcement resists tension, compression and shear. Due to 
symmetry, half of the beam is considered, which is evenly divided into 16 finite elements. The local axis OX of each 
finite element coincides with the axis of the beam, and the axis OZ is directed vertically upwards. Further mesh 
refinement does not lead to any noticeable changes in the numerical results. When the deformation theory of 
plasticity is used, it is assumed that ξ = 10. For all constitutive models α = β = 0, and for the CM3 model – 0.54   
(the deviation of paraboloid from the circular shape is close to its maximum value). 
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Figure 7. Load-displacement diagram for T5A1 specimen 
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Figure 8. Load-displacement diagram for T6A1 specimen 

Both the proposed approach and the particle method (Figures 7, 8) predict the load-bearing capacity of the 
considered bent beams with accuracy acceptable for practical calculations – within 10% compared with the results of 
the experiment. The behavior of the equilibrium state curves obtained by the above approaches also corresponds to 
the nature of the experimental results. However, the proposed approach is much simpler than the particle method. 96 
nonlinear algebraic equations had to be solved in the proposed approach for the spatial problem. The plane stress 
state was considered in (Belytschko & Rabczuk, 2006), 8200 particles were used in the design model, the number of 
equations is not specified. However, it is clear that the dimension of the design model of the particle method is much 
greater than the dimension of the design model of the proposed approach, while the accuracy of the results of both 
approaches in determining the load-bearing capacity is almost the same. 

A design model of a multi-storey building from the SCAD Soft collection is shown in Figure 9. After 
performing the linear analysis and selecting the reinforcement, we have performed the elasto-plastic analysis of a 
fragment of the structure modeled by shell finite elements taking into account physical nonlinearity and 
reinforcement (Fialko & Karpilovskyi, 2017; (Fialko, 2015, 2018), and also by the spatial frame finite elements 
considered in this paper. For floors, the direction of the reinforcing rods coincides with the axes of the global 
coordinate system OX and OY, and for bar elements – with the direction of the longitudinal axis of each bar. In the 
walls, reinforcing bars are arranged vertically and in the circumferential direction. For shell finite elements, the axis 
of the reinforcing bars can be rotated at an arbitrary angle relative to the local axis OX (Fialko, 2015, 2018). 

 

Figure 9. Design model of the fragment of a multi-storey building 
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The load from the overlying floors is applied to the upper edges of the walls of the design fragment, and a 
uniformly distributed constant load is applied to the floor slabs. All loads vary in proportion to one parameter. All 
elements have the same characteristics of concrete and steel: E = 34 531 MPa, ν = 0.2, σc = 25.5 MPa, σt = 1.95 MPa, 
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Es = 201 000 MPa, σy,s = 408 MPa, Es´ = 0.01Es. The reinforcement ratio for walls is taken as μx = μz = 0.04, for floor 
slabs – μx = μy = 0.006, for beams and chords – μ = 0.023. 

The load-displacement diagram for the control node of the design model is shown in Figure 10. Curve 1 
corresponds to the deformation theory of plasticity, and curves 2 and 3 correspond to the theory of plastic flow. The 
yield criterion (e.g. Geniev et al., 1974) (CM3) was used for walls, and the Drucker-Prager criterion (СМ2) was 
used for floor slabs. When α‾ = 0.577 the yield surface is represented by a circular paraboloid, when α‾ = 0.545 the 
deviation of the paraboloid from circular shape is close to its maximum value. 

 

 

Figure 11. Limit states of finite elements in the fragment 

“Critical events” in the vicinity of the limit state are shown in Figure 11 for each shell finite element – the 
reinforcement in the tension area has reached the yield point, the reinforcement in the compression area has reached 
the yield point, the concrete in the compression area has exhausted its load-bearing capacity. Bar finite elements have 
not reached these limit states. 

Conclusions  

The proposed triangular and quadrilateral finite elements demonstrate an acceptable agreement with experimental 
results. It has been shown in the previous works. The spatial frame finite element shows an acceptable agreement 
with experimental results as well as with advanced numerical solutions obtained by other approaches. The uniform 
approach to both shell and spatial frame structural elements allows us to create the low-order finite elements for 
analysis of construction fragments consisting of thin-walled structural elements. It was found that fragments of floor 
slabs bounded by a closed contour formed by walls can work under conditions close to tension. Therefore, it is 
necessary in such cases to install strapping booms that reduce this tension effect. 
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